
International Journal of Research in Science and Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. I, Jan-Mar ISSN: 2249-0604

 32

International Journal of Research in Science and Technology

In software testing, it is often desirable to find test inputs that can handle specific features of the

program. To find these inputs by hand is extremely time-consuming, especially when the software is

complex. Therefore, many attempts have been made to automate the process. Random test data

generation consists of generating test inputs at random, in the hope that they will exercise the desired

software features. Often, the desired inputs must satisfy complex constraints, and this makes a random

approach seem unlikely to succeed. In contrast, combinatorial optimization techniques, such as those

using genetic algorithms, are meant to solve difficult problems involving the simultaneous satisfaction of

many constraints. This paper presents a technique that uses a genetic algorithm for automatic test-data

generation. A genetic algorithm is a heuristic that mimics the evolution of natural species in searching for

the optimal solution to a problem. In test data generation application, the solution sought by the genetic

algorithm is test data that causes execution of a given statement, branch, path, or definition-use pair in

the program under test.

Keywords: Software Testing, Chromosome, Allele, Test Data

AUTOMATED TEST DATA GENERATION USING

GENETIC ALGORITHMS

*Pankaj Saxena, #Vinay Singh

*Reader, Department of Computer Application, FMCA, R.B.S.College, Agra

#Asstt. Professor, Department of CS/IT, Anand Engineering College, Agra

ABSTRACT

INTRODUCTION

In software testing, one is often interested in judging how well a series of test inputs tests a piece

of code — good testing means uncovering as many faults as possible with a set of tests. Thus, a

test series that has the potential to uncover many faults is better than one that can only uncover a

few. Unfortunately, it is almost impossible to say quantitatively how many faults are potentially

uncovered by a given test set. This is not only because of the diversity of the faults themselves,

but because the very concept of a ―fault‖ is only vaguely defined. This has lead to the

development of test adequacy criteria —criteria that are believed to distinguish good test sets

from bad ones. Once a test adequacy criterion has been selected, the question that arises next is

how one should go about creating a test set that is ―good‖ with respect to that criterion [1]. Since

this can be difficult to do by hand, there is an obvious need for automatic test data generation.

Test data must be generated for feasible paths. A path is feasible if there exists some input that

will cause the path to be traversed during execution [2].

International Journal of Research in Science and Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. I, Jan-Mar ISSN: 2249-0604

33

International Journal of Research in Science and Technology

A system fails when it does not meet its specification [3]. The purpose of testing a system is to

discover faults that cause the system to fail rather than proving the code correctness, which is

often an impossible task [4]. In the software testing process, each test case has an identity and is

associated with a set of inputs and a list of expected outputs [5]. Functional (black-box) test

cases are based solely on functional requirements of the tested system, while structural (white-

box) tests are based on the code itself. According to [5], black-box tests have the following two

distinct advantages: they are independent of the software implementation and they can be

developed in parallel with the implementation. The number of combinatorial black-box tests for

any non-trivial program is extremely large, since it is proportional to the number of possible

combinations of all input values. On the other hand, testing resources are always limited, which

means that the testers have to choose the tests carefully from the following two perspectives:

1. Generate good test cases. A good test case is one that has a high probability of detecting

an as-yet undiscovered error [6]. Moreover, several test cases causing the same bug may

show a pattern that might lead the programmer to the real cause of the bug.

2. Prioritize test cases according to a rate of fault detection – a measure of how quickly

those test cases detect faults during the testing process [7].

This paper is concerned with the problem of generating test data for a particular program

automatically that works on the principle of Genetic algorithms. There have been a lot of

attempts over the years to develop a tool to automatically generate the test data. Research has

highlighted the approach to generate test data automatically using genetic algorithm.

GENETIC ALGORITHMS: AN OVERVIEW

Genetic Algorithms (GAs) are general-purpose search algorithms, which use principles inspired

by natural genetics to evolve solutions to problems. As one can guess, genetic algorithms are

inspired by Darwin's theory about evolution [8]. They have been successfully applied to a large

number of scientific and engineering problems, such as optimization, machine learning,

automatic programming, transportation problems, adaptive control, etc. GA starts off with

population of randomly generated chromosomes, each representing a candidate solution to the

concrete problem being solved, and advances towards better chromosomes by applying genetic

operators based on the genetic processes occurring in nature. So far, GAs have had a great

measure of success in search and optimization problems due to their robust ability to exploit the

information accumulated about an initially unknown search space. Particularly GAs specialize in

large, complex and poorly understood search spaces where classic tools are inappropriate,

inefficient or time consuming [9]. As mentioned, the GA's basic idea is to maintain a population

of chromosomes. This population evolves over time through a successive iteration process of

competition and controlled variation. Each state of population is called generation. Associated

with each chromosome at every generation is a fitness value, which indicates the quality of the

solution, represented by the chromosome values. Based upon these fitness values, the selection

of the chromosomes, which form the new generation, takes place. Like in nature, the new

International Journal of Research in Science and Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. I, Jan-Mar ISSN: 2249-0604

34

International Journal of Research in Science and Technology

chromosomes are created using genetic operators such as crossover and mutation. The

fundamental mechanism consists of the following stages:

1. Generate randomly the initial population.

2. Select the chromosomes with the best fitness values.

3. Recombine selected chromosomes using crossover and mutation operators.

4. Insert offsprings into the population.

5. If a stop criterion is satisfied, return the chromosome(s) with the best fitness.

6. Otherwise, go to Step 2.

AUTOMATED TEST DATA GENERATION SYSTEM

The genetic algorithm is used to generate the test data automatically.

To apply genetic algorithm to a particular problem, such as test case generation, we need to

determine the following elements [10]:

1. Genetic representation for potential solutions to the problem (e.g., test cases).

2. Method to create an initial population of potential solutions.

3. Evaluation function, which scores the solution quality (also called objective function).

4. Genetic operators that alter the composition of the off-springs.

5. Values of various parameters used by the genetic algorithm (population size, probabilities

of applying genetic operators, etc.).

Each element is briefly discussed below.

Representation refers to the modeling of chromosomes into data structures. Once again

terminology is inspired by the biological terms, though the entities genetic algorithm refers to are

much simpler than the real biological ones. Chromosome typically refers to a candidate data

solution to a problem, often encoded as a bit string.

Each element of the chromosome is called allele. In other words, chromosome is a sequence of

alleles. For example, consider 1-dimension binary representation: each allele is 0 or 1, and a

chromosome is a specific sequence of 0 and 1’s.

Initialization. This genetic operator creates an initial population of chromosomes, at the

beginning of the genetic algorithm execution.

The selection operator is used to choose chromosomes from a population for mating. This

mechanism defines how these chromosomes will be selected, and how many offsprings each will

create. The expectation is that, like in the natural process, chromosomes with higher fitness will

produce better offsprings. Therefore, selecting such chromosomes at higher probability will

eventually produce better population at each iteration of the algorithm. Classic selection methods

are Roulette-Wheel, Rank based, Tournament, Uniform, and Elitism. A tournament selection

operator is used in this implementation.

The crossover operator is practically a method for sharing information between two

chromosomes: it defines the procedure for generating an offspring from two parents. The

crossover operator is considered the most important feature in the GA, especially where building

International Journal of Research in Science and Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. I, Jan-Mar ISSN: 2249-0604

35
International Journal of Research in Science and Technology

blocks (i.e. schemas) exchange is necessary. The crossover is data type specific, meaning that its

implementation is strongly related to the chosen representation. It is also problem-dependent,

since it should create only feasible offspring’s. A Two-point crossover is used: a two random

points are selected and all the bits between these two points get exchanged between the two

parents.

The mutation operator alters one or more values of the allele in the chromosome in order to

increase the structural variability. This operator is the major instrument of the genetic algorithm

to protect the population against premature convergence to any particular area of the entire

search space [11]. Unlike crossover, mutation works with only one chromosome at a time. In

most cases, mutation takes place right after the crossover, so it practically works on the

offspring’s, which resembles the natural process. The most common mutation methods are:

1. Bit-flip mutation: given chromosome, every bit value changes with a mutation

probability.

2. Uniform mutation: choose one bit randomly and change its value.

IMPLEMENTATION

Evaluation function, also called objective function, rates the candidate solutions quality. This is

the only single measure of how good a single chromosome is compared to the rest of the

population. The fitness function calculates the fitness of each chromosome according to given

fitness function[12,13]. It may be possible to get some or all elements optimal in the first

generation as first generation get produced randomly. In such cases the system preserves them

and performs GA [14] on remaining chromosomes.

The list of common GA parameters is given below:

1. Population size – this parameter defines the size of the population, which may be critical in

many applications: If N is too small, GA may converge quickly, whereas if it is too large the GA

may waste computational resources.

2. Chromosome length – defines the number of allele within each chromosome. This number is

influenced by the chosen representation and the problem being issued.

3. Number of generations – defines the number of generations the algorithm will run. It is

frequently used as a stopping criterion.

4. Crossover probability (Pc) – the probability of crossover between two parents. The crossover

probability has another trade-off: if Pc is too low, then the sharing of information between high

fitness chromosomes will not take place, hence reducing their capability to produce better

offsprings.

5. Mutation probability (Pm) – the probability of mutation in a given chromosome. As

mentioned earlier, this method element helps to prevent the population from falling into local

extremes, but a too high value of Pm will slow down the convergence of the algorithm.

International Journal of Research in Science and Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. I, Jan-Mar ISSN: 2249-0604

36
International Journal of Research in Science and Technology

RESULTS

The system is tested with the following program:

main()

{

int x, y, p=1;

do {

scanf(“%d%d”,&x,&y);

}while(y<0);

for(i=1;i<=y;i++)

{

}

if(p>7000)

{

}

p=p*x;

printf(“\nx
y
 is %d”,p);

}

The code is written in MATLAB and the conditions given in the program are:

1. The value of x
y
 >7000

2. x
y
 should be positive

The crossover probability Pc is 0.7

The Mutation Probability Pm is 0.3

Table 1: Results after 5 generations

 Gen 1

x y Probabilit Operation

2 5 <0.3 Mutation

5 3 <0.3 Mutation

2 12 <0.7 Crossover

8 0 <0.3 Mutation

 Gen 2

66 5 1 Correct

5 67 1 Correct

2 12 0.7 Crossover

9 0 0.3 Mutation

 Gen 3

66 5 1 Correct

5 67 1 Correct

2 12 <0.7 Crossover

1 0 <0.3 Mutation

 Gen 4

66 5 1 Correct

5 67 1 Correct

2 5 <0.3 Mutation

1 64 <0.3 Mutation

 Gen 5

66 5 1 Correct

5 67 1 Correct

18 5 1 Correct

3 64 1 Correct

International Journal of Research in Science and Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. I, Jan-Mar ISSN: 2249-0604

37

International Journal of Research in Science and Technology

After 5 generations we get the correct test cases for the given program.

60

50

40

30

20

10

0
1 1.5 2 2.5 3 3.5 4 4.5 5

Number of Generations

CONCLUSION

The results show that the system can be satisfactorily used to find feasible test cases. It identifies

the feasible paths and tries to find the solutions for those paths. Results indicate that the

technique is effective at producing potential test cases automatically. Thus it finds optimal test

data automatically and much less time. The testing becomes easier as the test data gets generated

automatically.

REFERENCES

1. Korel B., Automated Software Test Data Generation. IEEE transaction on Software

Engineering (16)8:870-879, August, 1990.

2. Jasper R.,Brennan M.,Williamson K., Currier B., Test Data Generation and Feasible path

analisys. 1994

3. Pfleeger, S. L.: Software Engineering: Theory and Practice. 2nd Edition, Prentice-Hall, 2001.

4. DeMillo, R.A. & Offlut, A.J.: Constraint-Based Automatic Test Data Generation, IEEE

Transactions on Software Engineering 17, 9 (1991) 900-910.

5. Jorgensen, P. C.: Software Testing: A Craftsman's Approach. Second Edition, CRC Press,

2002.

6. Schroeder P. J., and Korel, B.: Black-Box Test Reduction Using Input-Output Analysis. In

Proc. of ISSTA '00 (2000). 173-177.

7. Elbaum, S., Malishevsky, A. G., Rothermel, G.: Prioritizing Test Cases for Regression

Testing, in Proc. of ISSTA '00 (2000). 102-112.

8. Holland, J. H.: Genetic Algorithms, Scientific American, 267(1) (1992) 44-150.

C
o
n
v
e
rg

e
n
c
e
 %

International Journal of Research in Science and Technology http://www.ijrst.com/

(IJRST) 2012, Vol. No. 2, Issue No. I, Jan-Mar ISSN: 2249-0604

38

International Journal of Research in Science and Technology

9. Herrera F., and Magdalena, L.: Genetic Fuzzy Systems: A Tutorial. Tatra Mt. Math.

10. Publ. (Slovakia), 13, (1997) 93-121

11. Michalewicz, Z.: Genetic Algorithms + Data Structures - Evolution Programs, Verlag,

Heidelberg, Berlin, Third Revised and Extended Edition, 1999.

12. Mitchell, M.: An Introduction to Genetic Algorithms, MIT Press, 1996.

13. Srivastava P. R., Kim T., Application of Genetic Algorithm in Software Testing,

International Journal of Software Engineering and its Applications, Vol.3, No.4, October

2009. [13].Malhotra, R. and Garg, M., 2011. An adequate based test data generation

techniques using genetic algorithm. Journal of Information Processing Systems,Vol. 7,

Issue 2, June 2011. [14].Andrew.,J.H..2011.Genetic algorithm for randomized unit

testing. Software Engineering, IEE jan-feb’2011, vol.37, Issue.1,pp 80-94

