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In software testing, it is often desirable to find test inputs that can handle specific features   of the 

program. To find these inputs by hand is extremely time-consuming, especially when the software is 

complex. Therefore, many attempts have been made to automate the process. Random test data 

generation consists of generating test inputs at random, in the hope that they will exercise the desired 

software features. Often, the desired inputs must satisfy complex constraints, and this makes a random 

approach seem unlikely to succeed. In contrast, combinatorial optimization techniques, such as those 

using genetic algorithms, are meant to solve difficult problems involving the simultaneous satisfaction of 

many constraints. This paper presents a technique that uses a genetic algorithm for automatic test-data 

generation. A genetic algorithm is a heuristic that mimics the evolution of natural species in searching for 

the optimal solution to a problem. In test data generation application, the solution sought by the genetic 

algorithm is test data that causes execution of a given statement, branch, path, or definition-use pair in 

the program under test. 
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ABSTRACT 
 

INTRODUCTION 

In software testing, one is often interested in judging how well a series of test inputs tests a piece 

of code — good testing means uncovering as many faults as possible with a set of tests. Thus, a 

test series that has the potential to uncover many faults is better than one that can only uncover a 

few. Unfortunately, it is almost impossible to say quantitatively how many faults are potentially 

uncovered by a given test set. This is not only because of the diversity of the faults themselves, 

but  because  the  very  concept  of  a  ―fault‖  is  only  vaguely  defined.  This  has  lead  to  the 

development of test adequacy criteria —criteria that are believed to distinguish good test sets 

from bad ones. Once a test adequacy criterion has been selected, the question that arises next is 

how one should go about creating a test set that is ―good‖ with respect to that criterion [1]. Since 

this can be difficult to do by hand, there is an obvious need for automatic test data generation. 

Test data must be generated for feasible paths. A path is feasible if there exists some input that 

will cause the path to be traversed during execution [2]. 
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A system fails when it does not meet its specification [3]. The purpose of testing a system is to 

discover faults that cause the system to fail rather than proving the code correctness, which is 

often an impossible task [4]. In the software testing process, each test case has an identity and is 

associated with a set of inputs and a list of expected outputs [5]. Functional (black-box) test 

cases are based solely on functional requirements of the tested system, while structural (white- 

box) tests are based on the code itself. According to [5], black-box tests have the following two 

distinct advantages: they are independent of the software implementation and they can be 

developed in parallel with the implementation. The number of combinatorial black-box tests for 

any non-trivial program is extremely large, since it is proportional to the number of possible 

combinations of all input values. On the other hand, testing resources are always limited, which 

means that the testers have to choose the tests carefully from the following two perspectives: 

1. Generate good test cases. A good test case is one that has a high probability of detecting 

an as-yet undiscovered error [6]. Moreover, several test cases causing the same bug may 

show a pattern that might lead the programmer to the real cause of the bug. 

2. Prioritize test cases according to a rate of fault detection – a measure of how quickly 

those test cases detect faults during the testing process [7]. 

This paper is concerned with the problem of generating test data for a particular program 

automatically that works on the principle of Genetic algorithms. There have been a lot of 

attempts over the years to develop a tool to automatically generate the test data. Research has 

highlighted the approach to generate test data automatically using genetic algorithm. 

 

GENETIC ALGORITHMS: AN OVERVIEW 

Genetic Algorithms (GAs) are general-purpose search algorithms, which use principles inspired 

by natural genetics to evolve solutions to problems. As one can guess, genetic algorithms are 

inspired by Darwin's theory about evolution [8]. They have been successfully applied to a large 

number of scientific and engineering problems, such as optimization, machine learning, 

automatic programming, transportation problems, adaptive control, etc. GA starts off with 

population of randomly generated chromosomes, each representing a candidate solution to the 

concrete problem being solved, and advances towards better chromosomes by applying genetic 

operators based on the genetic processes occurring in nature. So far, GAs have had a great 

measure of success in search and optimization problems due to their robust ability to exploit the 

information accumulated about an initially unknown search space. Particularly GAs specialize in 

large, complex and poorly understood search spaces where classic tools are inappropriate, 

inefficient or time consuming [9]. As mentioned, the GA's basic idea is to maintain a population 

of chromosomes. This population evolves over time through a successive iteration process of 

competition and controlled variation. Each state of population is called generation. Associated 

with each chromosome at every generation is a fitness value, which indicates the quality of the 

solution, represented by the chromosome values. Based upon these fitness values, the selection 

of the chromosomes, which form the new generation, takes place. Like in nature, the new 
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chromosomes are created using genetic operators such as crossover and mutation. The 

fundamental mechanism consists of the following stages: 

1. Generate randomly the initial population. 

2. Select the chromosomes with the best fitness values. 

3. Recombine selected chromosomes using crossover and mutation operators. 

4. Insert offsprings into the population. 

5. If a stop criterion is satisfied, return the chromosome(s) with the best fitness. 

6. Otherwise, go to Step 2. 

 

AUTOMATED TEST DATA GENERATION SYSTEM 

The genetic algorithm is used to generate the test data automatically. 

To apply genetic algorithm to a particular problem, such as test case generation, we need to 

determine the following elements [10]: 

1. Genetic representation for potential solutions to the problem (e.g., test cases). 

2. Method to create an initial population of potential solutions. 

3. Evaluation function, which scores the solution quality (also called objective function). 

4. Genetic operators that alter the composition of the off-springs. 

5. Values of various parameters used by the genetic algorithm (population size, probabilities 

of applying genetic operators, etc.). 

Each element is briefly discussed below. 

Representation refers to the modeling of chromosomes into data structures. Once again 

terminology is inspired by the biological terms, though the entities genetic algorithm refers to are 

much simpler than the real biological ones. Chromosome typically refers to a candidate data 

solution to a problem, often encoded as a bit string. 

Each element of the chromosome is called allele. In other words, chromosome is a sequence of 

alleles. For example, consider 1-dimension binary representation: each allele is 0 or 1, and a 

chromosome is a specific sequence of 0 and 1’s. 

Initialization. This genetic operator creates an initial population of chromosomes, at the 

beginning of the genetic algorithm execution. 

The selection operator is used to choose chromosomes from a population for mating. This 

mechanism defines how these chromosomes will be selected, and how many offsprings each will 

create. The expectation is that, like in the natural process, chromosomes with higher fitness will 

produce better offsprings. Therefore, selecting such chromosomes at higher probability will 

eventually produce better population at each iteration of the algorithm. Classic selection methods 

are Roulette-Wheel, Rank based, Tournament, Uniform, and Elitism. A tournament selection 

operator is used in this implementation. 

The crossover operator is practically a method for sharing information between two 

chromosomes: it defines the procedure for generating an offspring from two parents. The 

crossover operator is considered the most important feature in the GA, especially where building 
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blocks (i.e. schemas) exchange is necessary. The crossover is data type specific, meaning that its 

implementation is strongly related to the chosen representation. It is also problem-dependent, 

since it should create only feasible offspring’s. A Two-point crossover is used: a two random 

points are selected and all the bits between these two points get exchanged between the two 

parents. 

The mutation operator alters one or more values of the allele in the chromosome in order to 

increase the structural variability. This operator is the major instrument of the genetic algorithm 

to protect the population against premature convergence to any particular area of the entire 

search space [11]. Unlike crossover, mutation works with only one chromosome at a time. In 

most cases, mutation takes place right after the crossover, so it practically works on the 

offspring’s, which resembles the natural process. The most common mutation methods are: 

1. Bit-flip mutation: given chromosome, every bit value changes with a mutation 

probability. 

2. Uniform mutation: choose one bit randomly and change its value. 

 

IMPLEMENTATION 

Evaluation function, also called objective function, rates the candidate solutions quality. This is 

the only single measure of how good a single chromosome is compared to the rest of the 

population. The fitness function calculates the fitness of each chromosome according to given 

fitness function[12,13]. It may be possible to get some or all elements optimal in the first 

generation as first generation get produced randomly. In such cases the system preserves them 

and performs GA [14] on remaining chromosomes. 

The list of common GA parameters is given below: 

1. Population size – this parameter defines the size of the population, which may be critical in 

many applications: If N is too small, GA may converge quickly, whereas if it is too large the GA 

may waste computational resources. 

2. Chromosome length – defines the number of allele within each chromosome. This number is 

influenced by the chosen representation and the problem being issued. 

3. Number of generations – defines the number of generations the algorithm will run. It is 

frequently used as a stopping criterion. 

4. Crossover probability (Pc) – the probability of crossover between two parents. The crossover 

probability has another trade-off: if Pc is too low, then the sharing of information between high 

fitness chromosomes will not take place, hence reducing their capability to produce better 

offsprings. 

5. Mutation probability (Pm) – the probability of mutation in a given chromosome. As 

mentioned earlier, this method element helps to prevent the population from falling into local 

extremes, but a too high value of Pm will slow down the convergence of the algorithm. 
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RESULTS 

The system is tested with the following program: 

main() 

{ 

int x, y, p=1; 

do { 

scanf(“%d%d”,&x,&y); 

}while(y<0); 

for(i=1;i<=y;i++) 

{ 

 

} 

if(p>7000) 

{ 

 

} 

p=p*x; 

 

 

printf(“\nx
y
 is %d”,p); 

} 

The code is written in MATLAB and the conditions given in the program are: 

1. The value of x
y
 >7000 

2. x
y
 should be positive 

The crossover probability Pc is 0.7 

The Mutation Probability Pm is 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Results after 5 generations 

 Gen 1   

x y Probabilit Operation 

2 5 <0.3 Mutation 

5 3 <0.3 Mutation 

2 12 <0.7 Crossover 

8 0 <0.3 Mutation 

 Gen 2   

66 5 1 Correct 

5 67 1 Correct 

2 12 0.7 Crossover 

9 0 0.3 Mutation 

 Gen 3   

66 5 1 Correct 

5 67 1 Correct 

2 12 <0.7 Crossover 

1 0 <0.3 Mutation 

 Gen 4   

66 5 1 Correct 

5 67 1 Correct 

2 5 <0.3 Mutation 

1 64 <0.3 Mutation 

 Gen 5   

66 5 1 Correct 

5 67 1 Correct 

18 5 1 Correct 

3 64 1 Correct 
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After 5 generations we get the correct test cases for the given program. 
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CONCLUSION 

The results show that the system can be satisfactorily used to find feasible test cases. It identifies 

the feasible paths and tries to find the solutions for those paths. Results indicate that the 

technique is effective at producing potential test cases automatically. Thus it finds optimal test 

data automatically and much less time. The testing becomes easier as the test data gets generated 

automatically. 
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